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Encrypted adaptive video streaming protocols, such as HTTPS and QUIC, render traditional 

traf˚c inspection methods ineffective, making it challenging for operators to monitor service 

performance and user experience. Yet, video streaming remains a vital area for growth and 

monetization, with opportunities to bundle and upsell services. To succeed, operators need  

visibility into encrypted traf˚c without violating privacy standards.

RADCOM ACE addresses this challenge by leveraging advanced Arti˚cial Intelligence (AI), 

machine learning (ML), and heuristic models to deliver accurate, real-time insights into 

perceived Quality of Experience (QoE), even across fully encrypted video streams. By analyzing 

massive volumes of encrypted streaming data at scale, RADCOM generates key quality 

indicators (KQIs) such as:

	■ Video start delay

	■ Rebuffering events and durations

	■ Streaming resolution levels and duration per level

	■ Effective video throughput (in bytes)

These KQIs are normalized into a QoE score, ranging from 0 to 5, which offers operators a clear 

and consistent measure of user experience across the network. 

This white paper outlines RADCOM’s AI-driven methodology for assessing the quality of 

experience (QoE) of encrypted video. It details how encrypted data is processed, how metrics 

are derived, and how operators can use these insights to ensure service excellence for leading 

streaming platforms, including YouTube, Net˛ix, Amazon Prime Video, and Facebook.

 Introduction

Video services continue to dominate global internet traf˚c, now 
accounting for approximately 80% of all mobile data traf˚c. At the 
same time, most of that video traf˚c is encrypted, and this trend 
is expected to continue. This presents a signi˚cant challenge for 
telecom operators striving to extract meaningful insights from 

their networks and ensure a high Quality of Experience (QoE) for 
subscribers.
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 Understanding adaptive video streaming

Streaming applications like YouTube utilize Dynamic Adaptive Streaming over HTTP 

(DASH)—also known as MPEG-DASH—to encrypt and deliver video content ef˚ciently. DASH 

is a multi-bitrate (MBR) streaming method designed to maintain a high Quality of Experience 

(QoE), even under ˛uctuating network conditions. It works by breaking video content into 

small segments (typically a few seconds each), with each segment encoded at multiple 

bitrates and resolutions.

Figure 1: Dynamic Adaptive Streaming over HTTP (DASH)

During playback, the DASH client uses an adaptive bitrate (ABR) algorithm to dynamically 

select the highest-quality segment that current network conditions and buffer levels can 

support. This adaptive approach minimizes stalls and rebuffering, ensuring smooth and 

consistent video delivery. 
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Figure 2: Wireshark analysis of video streaming

To accurately assess QoE for encrypted video streaming, it is essential for content classi˚cation 

algorithms to automatically detect the quality level of each video segment directly from the 

network traf˚c, despite the encryption. By classifying the video quality of encrypted streams, 

operators can regain visibility and estimate key video streaming KQIs such as initial playout 

delay, video resolution, and rebuffering frequency and duration.
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Protocol Description Advantages Disadvantages

MPEG-DASH Open standard for 
adaptive streaming; 
codec-agnostic

	■ Open and 
standardized (ISO/IEC) 

	■ Codec-agnostic 
(supports H.264, H.265, 
AV1, etc.)

	■ Widely supported in 
modern players and 
devices

	■ Not natively supported 
by Apple Safari

	■ Requires additional 
effort for DRM and 
compatibility

HLS 
(HTTP Live 
Streaming)

Developed by Apple; 
widely used for iOS 
and Safari

	■ Strong support on 
Apple devices

	■ Built-in encryption and 
DRM 

	■ Simple to implement 
and widely adopted

	■ Higher latency

	■ Initially limited to MPEG-
TS (less ef˚cient than 
newer formats like 
fMP4)

HDS 
(HTTP 
Dynamic 
Streaming)

Adobe's streaming 
solution (Flash-
based)

	■ Integrated well with 
Flash ecosystem

	■ Provided analytics and 
DRM via Adobe tools

	■ Flash is obsolete

	■ No longer supported in 
most browsers

	■ Not suitable for modern 
streaming

Smooth 
Streaming

Developed by 
Microsoft for 
Silverlight

	■ Good integration with 
Microsoft platforms

	■ Adaptive bitrate 
streaming supported

	■ Obsolete due to 
Silverlight deprecation

	■ Limited cross-platform/
browser support

CMAF 
(Common 
Media 
Application 
Format)

A format rather than 
a protocol, used with 
HLS and DASH

	■ Reduces storage and 
encoding overhead 
by using a common 
format

	■ Enables low-latency 
streaming

	■ Compatible with both 
HLS and DASH

	■ Still requires use with a 
protocol (e.g., DASH or 
HLS)

	■ May require more 
complex setup

Table 1: Main types of dynamic adaptive streaming over HTTP and comparable protocols

MPEG-DASH is ideal for cross-platform, codec-˛exible streaming, though it lacks full support 

from Apple. HLS remains the best choice for Apple-centric delivery, although it can experience 

higher latency. In contrast, HDS and Smooth Streaming are now considered obsolete. CMAF 

has emerged as a modern enhancement that bridges HLS and DASH, enabling more ef˚cient 

and uni˚ed content delivery.
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To address this, RADCOM has developed a heuristic-based approach that constructs a 

real-time, aggregated view of encrypted video traf˚c during the pre-processing stage. 

This process leverages RADCOM’s Deep Packet Inspection (DPI) module alongside its ˛ow 

aggregator components to generate a uni˚ed, structured time series representing video 

session behavior.

This intelligent aggregation is optimized explicitly for RADCOM’s AI engine, enabling the 

system to generate accurate, real-time video quality metrics for each encrypted streaming 

session. These metrics serve as the foundation for assessing perceived Quality of Experience 

(QoE), even in complex, multi-˛ow, and encrypted environments.

 Challenges in understanding video quality of experience

Encrypted video streaming applications—like 

YouTube—often generate multiple parallel ˛ows, each 
responsible for downloading different video segments. 
These ˛ows may use protocols such as HTTPS, HTTP/2, 

QUIC, or a combination of them, which makes it 
increasingly dif˚cult to monitor and accurately assess 

the video’s Quality of Experience (QoE).

 The AI/ML learning process
RADCOM has developed an innovative ‘video crawler’ designed to capture and analyze 

network-level video streaming traf˚c, user experience feedback, and application-level data. 

This tool enables the collection of rich datasets that re˛ect real-world streaming behavior.

Using this data, RADCOM’s AI engine is trained via supervised machine learning, where user 

experience feedback and application metrics serve as labeled data. By correlating these labels 

with patterns in the underlying network traf˚c, RADCOM’s solution learns to accurately infer 

video Key Quality Indicators (KQIs)—such as buffering, resolution, and startup delay—based 

solely on network behavior, even in encrypted environments.
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The training process is conducted of˛ine, leveraging a combination of real traf˚c from the 

operator’s live network and controlled data from the RADCOM lab. The resulting model is then 

validated against historical traf˚c traces and test user data to ensure robustness and accuracy 

across a wide range of network conditions and usage scenarios.

 Resulting video metrics for user experience analysis 

RADCOM’s video streaming quality metrics are entirely network-based, leveraging the 

characteristics of the underlying traf˚c to estimate user experience without requiring access 

to application-layer data. All metrics are derived directly from encrypted network traf˚c using 

advanced analytics and protocol-aware inspection.

Figure 4: Video segment download pattern

RADCOM’s technology identi˚es and analyzes individual video segments downloaded over the 

network. The download duration is calculated by detecting the start of the ˚rst video segment 

request and the arrival of the ˚nal packet in the corresponding video response. It is important 

to note that this download duration is typically shorter than the actual playback length of the 

video, as segments are downloaded ahead of time to maintain a buffer and ensure smooth 

playback.

Figure 3: RADCOM's innovative ML learning process
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Figure 5 illustrates a single encrypted video ˛ow where traditional HTTP-level information 

is unavailable. In such cases, all relevant download activity—from the initial video request 

to the ˚nal response—is inferred and summarized using heuristic algorithms developed by 

RADCOM’s research team.

Time t
1
 represents the duration of the download for the ˚rst video segment. The interval 

between t
1
 and t

2
 indicates an application-driven pause, often referred to as an application 

timeout. During this period, the video player evaluates the current buffer and playback 

conditions to determine whether additional segments need to be requested. This helps 

optimize the selected video resolution and avoids unnecessary data downloads when buffer 

levels are suf˚cient.

At time t
2
, the application resumes downloading by requesting a new video segment to re˚ll 

the playback buffer. RADCOM’s solution aggregates these parallel data ˛ows in real time, 

using proprietary algorithms to construct a uni˚ed structure that represents multi-˛ow 

request-response patterns. This aggregated data forms the foundation for calculating video 

quality metrics (KQIs).

It is essential to note that the total video download duration typically concludes before the 

complete video playback ends, as segments are downloaded in advance. RADCOM’s 

AI-based video quality metrics are calculated based on these valid, aggregated segment-level 

download durations.

In network conditions where congestion or high packet loss is present, the period of Network 

Silence (between t
1
 and t

2
) may shrink or disappear entirely. RADCOM’s AI engine learns from 

these traf˚c patterns. It uses them to accurately detect re-buffering events as they occur, 

contributing to a more precise assessment of the viewer’s Quality of Experience.

RADCOM provides a comprehensive set of 
metrics for encrypted adaptive video streaming. 

These metrics are available through multiple 
analytics dashboards, providing deep visibility 

into user experience, even across encrypted 
traf˚c. 
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The following metrics are supported:

1.	 Minimum Time to Play

An estimated metric, based on a heuristic model, that measures the time elapsed 

from the video request to the start of playback. Due to variability in video codecs and 

encoding ef˚ciency, this metric is derived through trained estimations, validated against 

thousands of video downloads and user feedback to ensure accuracy.

2.	Video Re-buffering Count and Duration

Leveraging AI-driven heuristic modeling, RADCOM identi˚es genuine re-buffering 

events using time series analysis of segment download behavior.

a.	 Re-buffering count: Number of detected re-buffering events during a session.

b.	 Re-buffering duration: Total time during which playback was stalled due to 

buffering.

3.	Video Resolution Duration

This metric captures the duration of the video played at each resolution level, measured 

at the segment level in milliseconds (ms). The resolution is inferred using time series 

modeling that incorporates user-speci˚c download history for enhanced precision.

Resolution levels:

	■ Level 1: 144p–240p

	■ Level 2: 360p–480p

	■ Level 3: 720p–1080p

	■ Level 4: 1440p–2160p+ (including 4320p)

These values can be used to calculate the relative proportion of each resolution during 

the entire video playback session.
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4.	Video Duration and Byte Count

Indicates the total video playback duration along with the cumulative number of 

downloaded bytes associated with that video session.

5.	Effective Throughput

Represents the download throughput for the video session, calculated by aggregating 

video segment ˛ows and excluding idle or silent network periods to provide a true 

re˛ection of content delivery performance.

Here is a summary of the video streaming metrics:

# CDR Field 
Name

Units Data type Description Sample 
Data

Expected 
Values 

1 Estimate_
minimal_
playout_time

mSec Numeric (11,0) Minimum elapsed 
time until video starts 
playing on the client

3,000 0-40,000 
(up to 40 
seconds)

2 Video_total_
duration

mSec Numeric (11,0) Effective video 
duration as observed 
by the client

30,000 0-3,600,000 
(up to 1 hour)

3 Video_
rebuffer_
count

 Numeric (11,0) Total number 
of re-buffering 
occurrences

3 0-10

4 Video_
rebuffer_
duration 

mSec Numeric (11,0) Sum of re-buffering 
duration for all re-
buffering events

2,000 0-3,600,000 
(up to 1 hour)

5 Video_
resolution_
duration_1 

mSec Numeric (11,0) Duration of video in 
resolution 1 

5,000 0-3,600,000 
(up to 1 hour)

6 Video_
resolution_
duration_2 

mSec Numeric (11,0) Duration of video in 
resolution 2 

5,000 0-3,600,000 
(up to 1 hour)

7 Video_
resolution_
duration_3 

mSec Numeric (11,0) Duration of video in 
resolution 3 

5,000 0-3,600,000 
(up to 1 hour)

8 Video_
resolution_
duration_4 

mSec Numeric (11,0) Duration of video in 
resolution 4 

5,000 0-3,600,000 
(up to 1 hour)

9 Mean_
effective_
throughput_
received

'Bytes/
sec

Numeric (11,4) Total DL effective 
throughput

10,000 0-10,000,000 
(up to 10MB)

10 Total DL video 
bytes

Bytes Numeric (11,0) Total user bytes for 
video not including 
SSL , TCP headers or 
retransmissions i.e. 
sum of DL bytes for 
all data windows

1,000,000 0-100,000,000 
(up to 100MB)
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 Video streaming insights

RADCOM provides advanced video Key Quality Indicators (KQIs) and actionable insights 

across multiple operational dimensions, including APN, device types, geographic regions, and 

charging characteristics. These KQIs help operators monitor and optimize video streaming 

experiences at scale.

	■ Video vMOS (Video Mean Opinion Score)

This metric represents a weighted composite score based on key quality indicators such as:

	■ Time to Start

	■ Re-buffering Proportion

	■ Resolution Level

The weights and thresholds used in this calculation are fully con˚gurable to align with 

operator-speci˚c performance and experience goals.

While there is currently no universally accepted industry standard for video vMOS, RADCOM’s 

methodology is tailored to re˛ect real user experience, offering granular visibility and 

supporting data-driven decision-making across the network.

vMOS component vMOS Score

Minimum time to 
play score 

2

Rebuffering Score 2

Resolution Score 1

vMOS Score (0-5) = Minimum time to play score + Rebuffering Score + Resolution Score

12

RADCOM provides 

advanced video KQIs 

and insights to help 

operators optimize 

video streaming 

experiences at scale.



Playout score
(2 = best, 0=worst) Minimum playout time (sec)

2 less or equal to 1

1.7 greater than 1 and less or equal to 3

1.4 greater than 3 and less or equal to 6

1.2 greater than 6 and less or equal to 8

1 greater than 8 and less or equal to 10

0.8 greater than 10 and less or equal to 12

0.6 greater than 12 and less or equal to 14

0.4 greater than 14 and less or equal to 16

0.2 greater than 16 and less or equal to 18

0 greater than 18

Rebuffering score 
(2 = best, 0=worst)

Rebuffering Ratio = rebuffering duration / 
duration of video

2.0 0

1.5 less or equal to 0.1

1 Greater than 0.1 and less than or equal to 0.2

0.8 Greater than 0.2 and less than or equal to 0.4

0.6 Greater than 0.4 and less than or equal to 0.6

0.3 Greater than 0.6 and less than or equal to 0.8

0 Greater than 0.8

Minimum time to play score:

Rebuffering score =
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 Examples of video streaming insights

Figure 6 illustrates the relative distribution of video playback duration across four resolution 

levels, segmented by subscriber attributes such as APNs, device types, frequency bands, and 

geographic locations.

Figure 5: Relative video duration distribution

The ˚gure below shows that Postpaid subscribers have a 25% higher vMOS score compared 

to Prepaid. The other diagram represents a premium Internet APN, which has a 30% higher 

vMOS than a standard Internet APN.

Resolution score (0-1) = [ (Video_resolution_duration_2 +2 × Video_resolution_duration_3 + 3X 

Video_resolution_duration_4) / (sum of video resolution duration 1-4) X 3]

Additional video streaming KQIs (˚ltered on dimensions such as APN, device, and region):

	■ Average Rebuffering Ratio: avg(rebuffering duration / duration of the video) where

	■ rebuffering ratio > 0 

	■ Average Video Rebuffering Count: average rebuffering count for videos where the

	■ rebuffering count > 0

	■ Video Resolution: Ratio of video duration for each of the four resolution levels

	■ Average Minimal Playout Time 

	■ Average Video Duration: Average video duration where vMOS > 0

	■ Total Video Data: Total video bytes for all videos where vMOS > 0

	■ Average Download Throughput: Average effective video throughput where vMOS > 0
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 Conclusion

As video streaming becomes a dominant source of data traf˚c, operators must ensure the 

delivery of high-quality video services to protect revenue streams and meet growing customer 

expectations. With subscriber video consumption on the rise, the cost of carrying this traf˚c 

has also increased. To remain competitive, operators must evolve their business models to 

monetize video services effectively while maintaining superior service quality.

Leveraging AI-powered analytics, RADCOM offers end-to-end visibility into subscriber Quality 

of Experience (QoE) and network performance for leading video platforms. Operators gain 

accurate insights into streaming quality and usage across multiple dimensions—including 

devices, roaming partners, locations, and APNs—enabling data-driven decisions and proactive 

service assurance. RADCOM offers powerful AI-driven intelligence that empowers you to 

understand and optimize customer experience, even in fully encrypted environments.

Delivering a consistently high-quality video 
experience is essential for differentiation and 

customer retention. To support this, RADCOM 
ACE offers advanced solutions speci˚cally 

designed to address the unique challenges of 

encrypted video streaming.

Figure 6: Comparing different vMOS scores
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